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Abstract

A method is proposed to determine the conformational equilibrium of flexible polypeptides in solution, using the data pro-
vided by NMR spectroscopy and theoretical conformational calculations. The algorithm consists of the following three steps:
(i) search of the conformational space in order to find conformations with reasonably low energy; (ii) simulation of the NOE
spectrum and vicinal coupling constants for each of the low energy conformations; and (iii) determining the statistical weights
of the conformations, by means of the maximum-entropy method, in order to obtain the best fit of the averaged NOE intensities
and coupling constants to the experimental quantities. The method has been applied to two cyclic enkephalin analogs: DNS1-c-
[D-A2bu2,Trp4,Leu5]enkephalin (ENKL) and DNS1-c-[D-A2bu2,Trp4,D-Leu5]enkephalin (ENKD). NMR measurements were
carried out in deuterated dimethyl sulfoxide. Two techniques were used in conformational search: the electrostatically driven
Monte Carlo method (EDMC), which results in extensive search of the conformational space, but gives only energy minima, and
the molecular dynamics method (MD), which results in a more accurate, but also more confined search. In the case of EDMC
calculations, conformational energy was evaluated using the ECEPP/3 force field augmented with the SRFOPT solvation-shell
model, while in the case of MD the AMBER force field was used with explicit solvent molecules. Both searches and subsequent
fitting of conformational weights to NMR data resulted in similar conformations of the cyclic part of the peptides studied. For
both ENKL and ENKD a common feature of the low-energy solution conformations is the presence of a type II′ or type IVβ-turn
at residues 3 and 4; the ECEPP/3 force field also gives a remarkable content of type IIIβ-turn. Theseβ-turns are tighter in the
case of ENKL, which is reflected in different distributions of theD-A2bu(NγH)· · ·D-A2bu(CO) andD-A2bu(NγH)· · ·Gly3(CO)
hydrogen-bonding distances, indicating that theD-A2bu(NγH) amide proton is more shielded from the solvent than in the case
of ENKD. This finding conforms with the results of temperature coefficient data of theD-A2bu(NγH) proton. It has also been
found that direct (MD) or Boltzmann (EDMC) averages of the observables do not exactly conform with the measured values,
even when explicit solvent molecules are included. This suggests that improving force-field parameters might be necessary in
order to obtain reliable conformational ensembles in computer simulations, without the aid of experimental data.

Abbreviations: A2bu, α,γ-diaminobutyric acid; DNS, 5-dimethylamino-naphthalene-1-sulfonyl (dansyl); ECEPP, Empiri-
cal Conformational Energy Program for Peptides and Proteins; EDMC, Electrostatically Driven Monte Carlo Method; MD,
Molecular Dynamics; NOE, Nuclear Overhauser Effect.

Introduction

Nuclear magnetic resonance and particularly nuclear
Overhauser effect (NOE) spectroscopy are useful tools

∗To whom correspondence should be addressed. E-mail:
adam@chemik.chem.univ.gda.pl

for conformational studies of peptides and proteins
(Wüthrich, 1986; Wagner, 1990; Yang et al., 1993).
A usual procedure is to convert the NOE intensities
into interproton distances and implement the latter in
molecular dynamics (MD) simulations as distance re-
straints (Wüthrich, 1986; Wagner, 1990; Yang et al.,
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1993). While such a procedure is justifiable in the case
of proteins, which occur in a well-defined conforma-
tion, its application to flexible polypeptides that occur
in a multiplicity of conformations is not straightfor-
ward. In the last case the experimental observables
should rather be regarded as conformational averages
(Brüschweiler et al., 1991; Blackledge et al., 1993).
According to this principle, a number of procedures
have been proposed. Most of them implement the
experimental information already during conforma-
tional search as time-averaged (Torda et al., 1989,
1990, 1993; Bonvin et al., 1991, 1994) or ensemble-
averaged (Brüschweiler et al., 1991; Scheek et al.,
1991; Blackledge et al., 1993; Kemmink et al., 1993;
Gippert et al., 1998) restraints. Other procedures
use the experimental information after the search, by
determining the statistical weights of the calculated
low-energy conformations, in order to obtain aver-
age interproton distances, vicinal coupling constants,
and temperature coefficients of amide protons that fit
best to the experimental data (Shenderovich et al.,
1988; Nikiforovich et al., 1993; Pearlman, 1996). In
this work we have followed and further developed the
second approach. We have implemented the electro-
statically driven Monte Carlo (EDMC) (Ripoll and
Scheraga, 1988, 1989, 1990, 1998) and MD meth-
ods in the conformational search and devised a fitting
procedure that is based on the maximum entropy prin-
ciple; this gives a reasonable fit to the data and, at the
same time, enables as many conformations as possi-
ble to enter the statistical ensemble. The approach has
been tested on two cyclic enkephalin analogs of the
following amino acid sequence:

DNS–c–[D-A2bu–Gly–Trp–Leu–] (ENKL)
DNS–c–[D-A2bu–Gly–Trp–D-Leu–] (ENKD)

where DNS denotes the 5-dimethylamino-naphthalene-
1-sulfonyl (dansyl) end group and A2bu denotes the
α,γ-diaminobutyric acid residue.

Methods

Synthesis

ENKL and ENKD were synthesized using the
solid-phase method on p-alcoxybenzyl alcohol resin.
The substrates were fluorene-9-yl-methoxycarbonyl
(Fmoc) derivatives of amino acids, while diisopropy-
locarbodiimide (DIPCI) and 1-hydroxybenzotriazole
(HOBt), or 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetra-

Figure 1. Structural diagram of ENKL and ENKD with proton
labels.

methyluronium hexafluorophosphate (HBTU) were
used as coupling reagents (Fields and Noble, 1990).

The coupling reagents were purchased from
Fluka AG. Dansyl hydrochloride was purchased
from Aldrich. The reagents were used with-
out additional purification. Fmoc-Leu, Fmoc-Trp,
and Fmoc-Gly were purchased from Novabiochem
and used without purification. Fmoc-D-Leu was
synthesized following the procedure of Bodan-
szky and Bodanszky (1984). Fmoc-D-A2bu(Boc)-
OH was synthesized as described below. Cy-
clization was performed using 2-(1H-benzotriazol-
1-yl)-1,1,3,3-tetramethylammonium tetrafluoroborate
(TBTU) (Schmidt and Neubert, 1991).

Preparation of Fmoc-D-A2bu(Boc)-OH
Fmoc-D-Gln-OH was synthesized first fromD-Gln
and FmocCl, using a standard procedure (Bodan-
szky and Bodanszky, 1984). Then theγ-carboxyamido
group of glutamine was converted into the amino
group using the procedure of Waki et al. (1981).
The γ-amino group was subsequently protected with
Boc using an appropriate procedure (Bodanszky and
Bodanszky, 1984).
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Purification of the peptides
The obtained peptides were purified by means of
the preparative RP-HPLC method. The moving phase
consisted of an isocrat comprising 31% and 33%
CH3CN in water for ENKL and ENKD, respectively,
and 0.1% TFA. The purity of the peptides was assessed
by means of the analytical RP-HPLC method. The
molecular constitution of the peptides was confirmed
using FAB-MS and1H NMR COSY spectroscopy.

NMR measurements

Proton NMR spectra were recorded on a 499.89 MHz
VARIAN spectrometer at the Interuniversity Nuclear
Magnetic Resonance Laboratory at the Technical Uni-
versity of Gdánsk. The experiments were carried out
in deuterated dimethyl sulfoxide (DMSO-d6). Tem-
perature coefficients of the amide resonances were
calculated from the spectra obtained at four tempera-
tures: 22, 30, 40, and 50◦C. Two-dimensional1H–1H
COSY and1H–1H NOESY spectra were recorded at
22◦C, the mixing timeτm being 0.30 s.

The spin systems of the amino acids were iden-
tified based on the position and shape of the signals
of leucine methyl protons (CδH3) and glycine methy-
lene protons (CαH2). The latter were coupled with the
glycine amide proton only, while the characteristic sig-
nals of leucine methyl protons served to determine the
positions of the remaining aliphatic protons and the
amide protons of this residue. The resonance peaks
of α,γ-diaminobutyric acid were unambiguously as-
signed by analysis of the magnetization transfer from
the amide (NαH and NγH) through the CαH and CγH2
protons to the CβH2 protons. The remaining signals
within the absorption range of aliphatic protons were
assigned to the CαH and CβH2 protons of tryptophan.
The part of the NMR spectrum that contained tryp-
tophan and dansyl proton signals required especially
careful analysis, because of their partial overlap. The
analysis of the coupling of the indole moiety was
started from the low-field (δ ≈ 10.8 ppm) signal of
the indole imide proton, which was coupled to the
Cδ1H proton only. The remaining peaks were assigned
based on the well-known order of the signals of the
CZ1H, CH2H, CZ3H, and Cε3H indole-ring protons
of tryptophan (see Figure 1 for proton labels). The
1H NMR spectrum of dansyloglycine was used to as-
sign the peaks coming from the dansyl protons. The
1H NMR spectra of ENKL and ENKD, together with
signal assignments are shown in Figure 2.

The 3JCαHN coupling constants were determined
from 1H NMR spectra by measuring the distance
between the multiplet lines of the Hα protons. The
estimated experimental error was 0.1 Hz.

Conformational calculations

Force fields
In the present study the ECEPP/3 (Nemethy et al.,
1992) and AMBER (Weiner et al., 1986) force fields
were used. In both cases the total conformational en-
ergy,Etot , can generally be expressed as the sum of
the bond energy,Eb, bond angle energy,Eθ, elec-
trostatic energy,Ees , nonbonded energy,Enb, and
torsional energy,Etor , as given by Equation 1:

Etot=
∑
bonds

kdi (di − d◦i )2+
∑

bond angles

kθ
i (θi − θ◦i )2

+
∑
i<j

[
qiqj

εrij
+ Aij
r12
ij

− Bij
r6
ij

]

+
∑

H−bonded pairs

[
qiqj

εrij
+ Cij
r12
ij

− Dij
r10
ij

]
+

∑
torsional angles

∑
n

Vni [1+ cos(nφi − γni)] (1)

wheredi , d◦i , andkdi are the length of theith bond,
the ‘strainless’ length, and the force constant, respec-
tively, θi , θ◦i , and kθ

i are the value of theith bond
angle, the ‘strainless’ value, and the force constants,
respectively,rij is the distance between atomsi and
j , Aij , Bij , Cij , andDij are pair-specific constants
in the nonbonded potentials,ε is the relative dielectric
permittivity, qi is the partial charge of atomi, φi is
the ith torsional angle,n is the multiplicity of a tor-
sional energy term,Vni is the torsional constant of
multiplicity n characteristic of theith angle andγni
is the respective phase angle.

In the case of the ECEPP/3 force field, which
assumes rigid valence geometry, the first two terms
are not present except in the cases of cyclic peptides,
where they have to be considered when closing in-
trachain loops [e.g. the Nγ(D-A2bu)–C′(Leu) amide
bridge in this study].

In the case of the calculations with the AMBER
force field the solvent was considered at microscopic
level (see below), while in the case of the ECEPP/3
force field the solvation energy (Esolv) was evaluated
in the SRFOPT solvent-accessible surface model (Vila
et al., 1991), whose parameters pertain to solvation
by water. However, because of the comparatively high
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Figure 2. The1H NMR spectra of ENKL (a) and ENKD (b). See Figure 1 for the proton labels.

dielectric constant and basicity of DMSO (Reichardt,
1988), we considered it more appropriate to use this
solvation model than not introducing solvation at all.
In our earlier study of oxytocin and vasopressin we
found that using SRFOPT results in much better agree-
ment of the conformationally averaged interproton
distances with those obtained from NOE data than in

the case of in vacuo calculations (Liwo et al., 1996). In
the SRFOPT model the solvation energy is expressed
by Equation 2:

Esolv =
∑
i

σiAi (2)
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where σi is the solvation energy of theith atom
per unit surface area andAi is the solvent-accessible
surface area of theith atom exposed to the solvent.

Force field parameters for the DNS end group
The valence geometry of the DNS N-terminal end
group, not present in the standard ECEPP/3 database,
was taken from appropriate data from the Cam-
bridge database of crystal structures of small organic
molecules (Allen et al., 1983). Because the ECEPP/3
force field uses rigid valence geometry, there was no
need to determine bond or bond angle constants. For
the AMBER force field, the bond and bond angle
constants were assigned by extrapolating data from re-
lated functional groups present either in the AMBER
(Weiner et al., 1986) or the MMX (Gajewski et al.,
1990) force fields. The partial atomic charges were
assigned the Mulliken population charges calculated
with the PM3 semiempirical method (Steward, 1989)
(ECEPP/3) or fitted using the RESP algorithm (Bayly
et al., 1993) to reproduce the 6-31G∗∗ molecular elec-
trostatic potential of the DNS–NH–CH3 model com-
pound (AMBER). The charges are shown in Figure 3.
Torsional constants were calculated from the 6-31G∗∗
energy curves of the rotation about appropriate bonds
of DNS–NH–CH3. All non-standard parameters of the
DNS end group are summarized in Table 1. Ab ini-
tio calculations were carried out using the program
GAMESS (Schmidt et al., 1993).

EDMC calculations
Global conformational search of the peptides stud-
ied was carried out using the electrostatically driven
Monte Carlo method (EDMC) (Ripoll and Scheraga,
1988, 1989, 1990, 1998) with the ECEPP/3+SRFOPT
force field. A total of about 2000 energy-minimized
conformations were generated for ENKL and ENKD,
respectively. The working temperature1 was 1000 K.
The resulting conformations were subsequently sub-
jected to a cluster analysis, using the minimum-
variance algorithm (Späth, 1980). The root mean
square (rms) deviation between heavy atoms at op-
timal superposition was taken as a measure of the
distance between conformations, and a cut-off value
of 0.2 Å was used to separate the families. For ENKL
and ENKD, 397 and 526 families of conformations,
respectively, were obtained.

1As opposed to canonical Monte Carlo sampling of the energy land-
scape, in the EDMC method the temperature is a purely abstract
parameter which only defines the probability of accepting energy
minima with a higher energy than the current one.

Table 1. Non-standard bond, bond angle (AMBER), and
torsional (ECEPP/3 and AMBER) parameters of the DNS
end group. See Figure 3 for atom types

Bond kd d◦
(kcal/mol× Å2) (Å)

CA–S∗ a 250.0 1.789

S∗–Oa 525.0 1.435

S∗–Na 230.0 1.618

Bond angle kθ θ◦
(kcal/mol× rad2) (deg)

N2–CA–CAb 70.0 120.0

CT–N2–CTb 50.0 118.0

CA–CA–S∗b 60.0 120.0

CA-S∗–Oa 60.0 109.5

O–S∗–Oa 140.0 109.5

CA–S∗–Na 45.0 109.5

O–S∗–Na 45.0 109.5

S∗–N–Ha 130.0 114.0

S∗–N–CTa 50.0 119.0

Dihedral angle Vn γ n

(kcal/mol)

ECEPP/3

CA–S∗–N–CTc 2.5 0.0 2

CA–CA–S∗–Nc 0.0 180.0 2

CA–CA–N–CTb 6.8 180.0 2

AMBER

CA–CA–S∗–Oc 0.0 180.0 2

CA–CA–S∗–Nc 0.0 180.0 2

CA–S∗–N–CTc 1.3 0.0 1

CA–S∗–N–CTc 2.3 0.0 2

CA–S∗–N–CTc 1.0 0.0 3

O–S∗–N–CTc 1.0 180.0 2

CA–S∗–N–Hc 0.0 180.0 2

O–S∗–N–Hc 0.0 180.0 2

CA–CA–N–CTb 6.8 180.0 2

Improper Vn γ n

dihedral angle (kcal/mol)

AMBER

S∗–CT–N–Hb 0.0 180.0 2

CT–CT–N2–CAb 1.0 180.0 2

CA–CA–CA–CAb 1.0 180.0 2

CA–CA–CA–S∗b 1.0 180.0 2

N2–CA–CA–CAb 1.0 180.0 2

aAdapted from the MMX force field (Gajewski et al.,
1990).
bExtrapolated from AMBER parameters pertaining to sim-
ilar atom types.
cDetermined in this work.



320

 

 

Figure 3. ECEPP (upper values) and AMBER (lower values in
italics) charges of the DNS end group.

Molecular dynamics simulations
Molecular dynamics simulations were carried out with
the AMBER force field (Weiner et al., 1986) using
the AMBER 4.1 package (Pearlman et al., 1995).
Explicit DMSO molecules with methyl groups consid-
ered as extended atoms were used. The corresponding
bond, bond angle and vdW parameters, as well as
partial atomic charges were taken from the literature
(Liu et al., 1995). The initial solvent configuration
around the peptide was obtained by filling a cubic
box with DMSO molecules subject to the condition
of non-overlap. The shortest distance of peptide atoms
from the box boundary was 15 Å, corresponding to
about 2500 DMSO molecules in a box. The sim-
ulations were carried out at 298 K, in a periodic
box, with applying the minimum-image convention.
A spherical cut-off with 9.0 Å radius was applied to
nonbonded and electrostatic interactions. The integra-
tion step was 2 fs. The initial 500 ps were carried out
in the N, P, T scheme, until solvent density was close
to 1.095 g/cm3, a value characteristic of liquid DMSO
(Riddick et al., 1986). Then the simulations were car-
ried out in the N, V, T scheme. The total duration of
each run was 7.5 ns. The conformations obtained in
the last 4 ns of simulations (after this period of time
the energy of the system was reasonably established)
were collected each 200th step and the resulting set of

conformations was subjected to a minimum-variance
cluster analysis, as described in the preceding sec-
tion. For ENKL and ENKD, 600 and 900 families of
conformations, respectively, were obtained.

Calculation of the statistical weights of the
conformations by fitting the theoretical to the
experimental NMR data

In this study we used the MORASS program (Post et
al., 1990; Meadows et al., 1994) to compute theoreti-
cal NOE integral intensities. This program solves the
system of Bloch differential equations for the cross-
relaxation of a system of interacting proton spins. The
correlation timeτc was set at 0.45 ms, based on data
for other small cyclic peptides (Bhaskaran et al., 1992;
Yu et al., 1992).

The theoretical NOE intensities are averages over
all conformations of the ensemble:

vkl = V◦
NC∑
i=1

xivikl k, l = 1,2, . . .NP (3)

xi ≥ 0, i = 1,2, . . .NC (4)
NC∑
i=1

xi = 1 (5)

wherevkl is the integral intensity of the NOE between
protonsk andl averaged over all conformations,vikl
is this intensity for conformationi, xi is the statistical
weight (fraction) of theith conformation,V◦ is a scal-
ing factor, andNP andNC are the number of protons
and the number of conformations, respectively.

The vicinal NH–CαH coupling constants corre-
sponding to theith conformation can be calculated
from the empirical Karplus relationship [Equation 6].

Jik = a◦k + a1k cosθik + a2k cos2 θik (6)

whereJik is the coupling constant of thekth angle
and theith conformation andθik is the corresponding
angle. For the CαH–NH coupling constants of non-
glycine residuesθ = φ∓60◦ for theL- andD-residues,
respectively and for the CαH2–NH coupling constant
of glycine and the CγH2–NγH coupling constant of
D-A2bu, θ = φ. The values of the constantsa◦, a1,
anda2 were taken from the literature (Bystrov, 1976)
and were 0.40,−1.1, and 9.4 for non-glycine residues
and 14.9,−1.1, and−9.4 for glycine and theD-A2bu
side chain, respectively. We chose to use these con-
stants and not those determined later by Pardi et al.
(1984), because they were determined using peptide
data, while the latter were determined using protein
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data and are therefore less relevant to the case studied
in our work. In fact, trial runs with the constants deter-
mined by Pardi et al. showed a much poorer fit of the
coupling constants to the experimental data.

As in the case of NOE intensities, the coupling
constants must be averaged over conformations:

Jk =
NC∑
i=1

xiJik (7)

Thus, the average NOE intensities and the aver-
age coupling constants are functions of the weights
x1, x2, . . . , xNC . The weights could therefore be de-
termined by least-squares fitting of the calculated
NOE intensities and coupling constants to the corre-
sponding experimental quantities, as given by Equa-
tion 8:

min8(V◦, x1, x2, . . . , xNC, a◦1, a11, a12, . . . , aNJ ) =∑
(k,l)∈K

wkl[vexpkl − vkl(V◦, x1, x2, . . . xNC)]2

+wJ
Nθ∑
k=1

[J expk − Jk(x1, x2, . . . xNC)]2

+
NJ∑
I=1

1

σ2
a◦I
(a◦I − a◦◦I )2+

1

σ2
a1I

(a1I − a◦1I )2

+ 1

σ2
a2I

(a2I − a◦2I )2 (8)

where K is the set of all signals considered,wkl
is the weight of the intensity of the NOE between
protonsk and l, wJ is the weight of the coupling-
constant term,Nθ is the number of angles for which
the coupling constants were determined,NJ is the
number of the sets of the constants in the Karplus
equation,a◦kI denotes the ‘standard’ value ofakI in
the Karplus equation,σakI is its estimated standard
deviation. Including the last sum accounts for the fact
that the values of the coefficients in Equation 6 are
uncertain within the limits determined by their stan-
dard deviations. This does not increase the number
of degrees of freedom, because the increase of the
number of parameters is accompanied by the same in-
crease of the number of terms in the minimized sum.
In this study the last sum consisted of six terms: three
for non-glycine-type and three for glycine-type cou-
pling constants (cf. Equation 6). We assumedσa◦ =
σa1 = σa2 = 2 Hz andwJ = 0.1 Hz−1; the latter
value provided comparable magnitude of the NOE and
coupling-constant term. The values ofσa◦ , σa1, andσa2

were assigned based on the differences of the param-

eters of the Karplus equation reported by Bystrov for
amino acids and small peptides (Bystrov, 1976) and by
Pardi for BPTI (Pardi et al., 1984).

The setsK of interproton NOEs consisted of all
observed off-diagonal signals except those coming
from geminal protons (e.g. the protons of methylene
groups). Equivalent protons (such as the protons of the
methyl groups) were grouped together and the sums of
NOEs coming from the whole groups were considered
as single signals. Signals not observed in the spec-
tra and resulting from pairs of protons belonging to
different residues were considered as anti-NOEs and
the experimental intensities in Equation 8 were set to
zero. This implied that the conformations with close
contacts between such protons had small statistical
weights. The weights of the differences in the NOE
intensities were calculated as follows:

wkl = 1

v
exp
kl + a

(9)

wherea is a constant. A similar formula for weights
was applied by Bonvin et al. (1991, 1994). When
a � vkl all weights are nearly equal and therefore
signal intensities are fitted. For smalla, the NOE part
of 8 becomes the sum of the squares of the relative
errors in signal intensities and therefore the spectrum
to be fitted gradually becomes a binary one, each entry
indicating whether there is a NOE or not between a
given pair of protons (depending on whether it is a
NOE or an anti-NOE). According to the least-squares
methodwkl should be proportional to the inverse of
the square of the estimated standard deviation of the
intensity of the corresponding signal:wkl = b/σ2

kl.
Therefore, in order to estimatea we registered nine
spectra of ENKD and calculated the average values
and variances of the intensities of 27 representative
signals (chosen to cover the whole intensity range).
Then we fitted the variances to Equation 10, obtaining
a equal to 2v, v being the average NOE intensity, with
the relative standard deviation of 1.

σ2
kl = b(vkl + a) (10)

Based on this,a was set at the average NOE
intensity, which provided a reasonable compromise
between exact and binary-pattern fitting. This value
can be considered as the lower bound ofa determined
by fitting the variance to Equation 10.

The measurements carried out to estimatea in
Equation 9 were also used to estimate the weighted
standard deviation in NOE intensity, which was found
to be 0.019.
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The8 of Equation 8 arises from the maximum-
likelihood principle of maximizing the joint probabil-
ity distribution function of all observables (Carroll and
Ruppert, 1988). If the errors obey Gaussian distribu-
tions, this results in minimization of a weighted sum
of squares, the weights being equal to the inverses of
the squares of the estimated standard deviations of the
measured quantities (Carroll and Ruppert, 1988).

Minimization of8 of Equation 8 usually results in
the predominance of only a few conformations, while
the weights of the remaining ones are close to zero.
This cannot be considered reasonable in the case of
ensembles obtained from MD simulations, which con-
tain many very similar conformations. However, such
a result is understandable in terms of the principles of
least-squares fitting. Assume that there are two con-
formations,a andb, and conformationa fits slightly
better to the experimental data than does conforma-
tion b. Even if the difference in fitting is very small,
the least-squares procedure will result effectively in a
weight of 1 for conformationa and 0 for conformation
b. If the difference in fitting is not significant in terms
of the experimental error, it is, however, reasonable
to consider that the weights of both conformations
are nearly equal. In order to prevent overfitting, we
have implemented the maximum entropy approach
(Gull, 1988; Daniell, 1991). There are a number of
maximum-entropy algorithms (Livesey and Brochon,
1987; Gull, 1988; Brochon et al., 1990; Lieu and
Hicks, 1994; Lyon et al., 1997) and in this study we
have applied the simplest one, in which the ‘entropy’
term, −α

∑NC
i=1 xi logxi is subtracted from the min-

imized sum of squares [Equation 8]. The resulting
functional is expressed by Equation 11:

9(V◦, x1, x2, . . . , xNC) = 8(V◦, x1, x2, . . . , xNC)

+ α

NC∑
i=1

xi logxi (11)

The entropy term reaches its global minimum if
the statistical weights of all conformations are equal.
This can be regarded as the reference state, in which
no information about the preference of individual con-
formations is provided. Weight differentiating comes
only from the8 term that includes experimental infor-
mation. Therefore a common procedure is to choose
the coefficient at the entropy term,α, so that the
weightedχ2 value be equal to the number of obser-
vations (Livesey and Brochon, 1987; Brochon et al.,
1990; Daniell, 1991), which is equivalent to the re-
quirement that the mean errors in the fitted quantities

Figure 4. Weighted [with weights of Equation 9] volumes of ob-
served signals of pairs of protons belonging to different amino acid
residues in 2D NOE spectra of ENKL (a) and ENKD (b) (repre-
sented as the heights of the leftmost black bars), together with values
obtained by fitting of EDMC (middle bars) and MD (rightmost bars)
ensemble. See Figure 1 for proton labels. Each row corresponds
to a fixed relative position of protons in the amino acid sequence
[d(i, i + 1) for protons of neighboring residues, etc.] and each
column corresponds to the residue containing the first proton of a
pair.
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be comparable with the error estimates. In data anal-
ysis it is a natural approach, because the expected
‘misfit’ measures should be equal to the estimated
experimental inaccuracy; if the agreement between
theory and experiment is better, one starts fitting the
noise.

Another approach to avoid overfitting was pro-
posed earlier by Nikiforovich et al. (1993). Instead of
determining one set of conformational weights, they
used a Monte Carlo procedure to generate adistri-
bution of weights, so that the calculated distribution
of observables (interproton distances and coupling
constant) approached the distribution of experimental
quantities. However, this approach can be applied only
when the number of conformations in the ensemble is
limited (14 in their case); otherwise a reasonably dense
distribution of weights is effectively impossible to
generate (Nikiforovich et al., 1993). In our view, given
the uncertainties inherent in empirical force fields it
is advisable to use as large an ensemble as possible
and therefore the maximum-entropy approach is pre-
ferred. Pearlman (1996) minimized a target function
composed of appropriately weighted potential energy,
distance-restraint violation, coupling-constant viola-
tion, and a potential energy dispersion term. The
energy dispersion term should to some extent work
towards equating the weights.

Minimization of9 was carried out using the Se-
cant Unconstrained Minimization Solver (SUMSL)
routine (Gay, 1983). Minimization of8 (which is a
sum of squares) was carried out using the Marquardt
method (Marquardt, 1963). The variables were com-
mon logarithms of unnormalized weights, which also
comprised the factorV◦ of Equation 3. Although both
the Marquardt method and SUMSL are local mini-
mizers, we found the same minima, independent of
starting points, which suggests that9 is either uni-
modal or the alternative minima are very shallow and
robust local minimizers can jump over them to find the
global minimum.

Results and discussion

Determination of conformational equilibrium
Because EDMC is a fast and thorough method to
search the conformational space, these calculations
were carried out and their results processed first. With
α = 0 [no entropy term in Equation 11], the aver-
age deviation in the coupling constant for ENKD was
only 0.88 Hz (Table 2), which is lower than the about

1 Hz estimate of this error that can be inferred from
Figures 7 and 9 in (Bystrov, 1976). It should be noted
that the main portion of the error comes from the ap-
proximate form of the Karplus equation and not from
the error inherent in the experimental determination of
the coupling constants which in our case was 0.1 Hz
(cf. the Methods section). Withα = 0.2, the standard
deviations increased beyond estimated errors, which
removed the danger of overfitting and the ensembles
became reasonably rich; therefore we decided to use
this value. The experimental and ensemble-averaged
NOE intensities are compared in Figure 4. It should
be noted that the signals corresponding to protons of
the same residues and anti-NOEs that are not shown
in the diagrams were also included in the fitting. It can
be noted that the entropy and number of conformations
with significant weights increase much faster than the
sum of the squares of the errors8 or the standard
deviation of the coupling constant and NOE intensity
(Table 2). The conformations of ENKL and ENKD
constituting 70% of the ensemble obtained with this
value ofα are shown in Figures 5a and b.

Two and three long MD runs were started for
ENKL and ENKD, respectively, using the confor-
mations with the top statistical weights, obtained by
fitting EDMC ensembles withα = 0.0 (these weights
were 0.45 and 0.44 for ENKL and 0.28, 0.25, and
0.18 for ENKD, respectively). These runs were aimed
at obtaining more representative ensembles, because
EDMC produces only energy minima. The model used
in MD simulations was also more appropriate, because
it explicitly accounted for the solvation by DMSO
molecules, while parameters pertaining to hydration
and not DMSO solvation were used in EDMC calcula-
tions (no parameters of the SRFOPT model for DMSO
solvation to be used with the ECEPP/3 force field are
available). As in the case of EDMC ensembles, only
a very limited number of conformations was obtained
with α = 0 (Table 2) and the coupling constants were
clearly overfitted. Withα = 2, the standard deviations
in coupling constants increased to error limits and a
significantly large number of conformations was re-
quired to comprise 70% of the ensemble (however, the
weights of this 70% fraction still differ significantly,
so the respective conformations are not equally prob-
able). The conformations that constitute about 70% of
the statistical ensemble are shown in Figures 6a and
6b.

For ENKL the weighted deviation in NOE inten-
sity ranges from 0.015 to 0.018, which is on the order
of the experimental error of 0.019 (cf. the Methods
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a

b

Figure 5. The conformational ensemble of ENKL (a) and ENKD (b) obtained by fitting the statistical weights of EDMC-generated confor-
mations withα = 0.2. The bond width is proportional to the statistical weights. The pictures were produced using MOLMOL (Koradi et al.,
1996).

section). For ENKD the average standard deviation
ranges from 0.051 to 0.062, which is greater than
the experimental estimate. This is probably caused
by the inaccuracy of the method used to compute the
theoretical intensities.

It can be noted that the statistical weights of the
conformations obtained with the ECEPP/3+SRFOPT
force field are not correlated with their energies: con-
formations with energies by several kcal/mol above
the lowest-energy conformations have the greatest
statistical weights, while the lowest-energy confor-
mations have low statistical weights (Figure 7). The
standard deviations of the Boltzmann-averaged (using

the ECEPP/3+SRFOPT energies) coupling constants
and NOE intensities from the experimental values
also are remarkably greater than those computed with
best-fitting weights (Table 2). One obvious reason for
the discrepancy between the Boltzmann weights and
weights obtained by fitting to the NMR data is that the
SRFOPT parameterization corresponds to solvation by
water and not DMSO. However, the differences be-
tween the average values of the coupling constants
calculated from MD ensembles, which have been
obtained with explicit solvent, and the experimental
coupling constants are also remarkably greater than
the estimated experimental errors, although they are
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Table 2. Measured and computed values of the vicinal coupling constants of ENKL and ENKD and other measures of the
performance of the maximum-entropy fitting algorithm

Proton Jexp Jcalc (Hz)

EDMC ensemble MD ensemble

(Hz) Fitted;α on the topa ave.b Fitted;α on the topa ave.b

0.0 0.1 0.2 0.3 0.0 0.5 1.0 2.0

ENKL

A2bu2(NH)–A2bu2(CαH) 9.28 7.27 7.29 7.05 6.84 2.81 9.15 8.20 7.75 7.24 4.91

A2bu2(NγH)–A2bu2(CγH2) 14.66 14.07 14.31 14.37 14.39 14.14 14.62 14.37 14.36 14.35 14.29

Gly3(NH)–Gly3(CαH2) 12.21 13.70 13.68 13.79 13.87 13.72 12.22 12.38 12.44 12.45 12.27

Trp4(NH)–Trp4(CαH) 5.37 6.27 6.66 6.93 7.13 8.58 5.34 5.69 5.84 6.02 5.33

Leu5(NH)–Leu5(CαH) 9.77 9.79 9.57 9.37 9.23 8.70 9.69 9.46 9.52 9.64 8.61

σJ (Hz)c 1.10 1.16 1.29 1.42 3.34 0.07 0.54 0.75 1.18 2.03

σv
d 0.015 0.017 0.017 0.017 0.019 0.015 0.018 0.018 0.018 0.018

8 0.94 1.15 1.36 1.57 6.91 0.01 0.41 0.57 0.81 2.40

Entropy 0.95 3.52 4.26 4.68 2.82 1.61 6.11 6.23 6.32 6.39

Ne 2 15 28 45 3 224 275 324

ENKD

A2bu2(NH)-A2bu2(CαH) 9.28 7.58 7.43 7.12 6.81 1.92 9.22 8.49 8.06 7.66 6.01

A2bu2(NγH)–A2bu2(CγH2) 11.23 11.90 11.90 11.91 11.92 14.06 11.55 11.87 11.95 11.99 12.84

Gly3(NH)–Gly3(CαH2) 12.21 12.43 12.46 12.60 12.70 14.05 12.42 12.89 12.97 13.00 13.75

Trp4(NH)–Trp4(CαH) 7.81 8.34 8.51 8.78 8.97 8.61 7.62 7.66 7.84 7.98 7.40

Leu5(NH)–Leu5(CαH) 9.77 9.38 9.32 9.16 9.04 7.69 9.65 9.87 9.98 10.02 9.29

σJ (Hz)c 0.88 0.96 1.15 1.32 3.76 0.20 0.55 0.72 0.89 1.79

σv
d 0.060 0.060 0.061 0.061 0.127 0.051 0.058 0.059 0.060 0.062

8 2.52 2.65 2.97 3.28 15.36 0.11 2.06 2.28 2.50 5.27

Entropy 1.66 2.92 4.05 4.69 1.78 2.13 6.51 6.66 6.74 6.80

Ne 3 7 25 49 5 347 438 510

aα denotes the coefficient at the entropy term in Equation 11.
bBoltzmann average in the case of EDMC ensemble and unweighted average in the case of MD ensemble.
cStandard deviation in coupling constant.
dWeighted standard deviation in NOE integral intensity [weights calculated from Equation 9].
eNumber of conformations comprising 70% or more of the ensemble.

smaller than the differences calculated from EDMC
Boltzmann averages. This suggests that even consid-
ering the solvent at microscopic level is insufficient to
reproduce experimental observables and work still has
to be done on the parameterization of the force fields.
With the current force fields, it is advisable not to
apply a too tight energy cut-off on the conformations
constituting the basis set used in fitting.

Dependence of the conformational ensemble on
weights in the minimized sum and on the choice of
entropy factorα
The functional9 of Equation 11 contains many con-
stants (the scaling factors of error terms in8 and of the
entropy term) that can be estimated only within tighter

or looser confidence limits. Such problems with scal-
ing different terms also occur in other ensemble-fitting
algorithms (Pearlman, 1996). It is therefore critical
to determine how sensitive the derived conformational
ensemble is on the choice of scaling factors. Figure 8
compares the weights calculated for the MD ensem-
ble of ENKL with differenta factors in NOE weights
[Equation 9] and differentwJ . As shown, the weights
obtained with different scaling of error terms are in
tight correlation, which indicates that the method is
robust.

The sample dependence of the set of weights for
the MD ensemble of ENKL on the entropy scaling
factorα is shown in Figure 9. As shown, the weights
gradually become more equal with increasingα. On
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a

b

Figure 6. The conformational ensemble of ENKL (a) and ENKD (b) obtained by fitting the statistical weights of MD-generated conformations
with α = 2.0. The bond width and shade of grey are proportional to the statistical weights. The pictures were produced using MOLMOL
(Koradi et al., 1996).

the other hand, the weights obtained with smallα’s are
still tightly correlated with the weights obtained with
α = 2 that were used in further considerations. This
indicates that the results do not change qualitatively,
even within a broad range ofα.

Analysis of the obtained conformational ensembles
As shown (Figures 5 and 6), the conformational en-
sembles derived from the EDMC and MD sets differ,

although the same experimental data were used to
compute the statistical weights. The most pronounced
differences occur in the DNS and Trp aromatic groups,
where little or no experimental data were collected.
The conformations of the cyclic part of the analogs for
which extensive NMR data were collected are more
similar. The differences are likely to be caused by
using different force fields and specifically different
solvation models. Because an appropriate solvent was
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Figure 7. Impulse plot of statistical weights of the conformations of
the EDMC ensembles of ENKD and ENKL obtained withα = 0.2
versus relative conformational energy.

Figure 8. Correlation diagrams between the weights of the MD en-
semble obtained withwJ = 0.1 anda = 0.01 of Equation 9 (w1,
abscissae) with those obtained with different values ofwJ and a
(w2, ordinates). Squares:wJ = 1.0 (the entropy factorα was in-
creased to 20, in order to maintainσJ = 1.0), circles and triangles:
a = 0.001 and 1.0, respectively.

 

 

 

a

b

Figure 9. (a) Dependence of the statistical weights of the MD en-
semble of ENKL on the scaling factorα in Equation 11. The weights
are sorted in descending order. (b) Correlation between the weights
determined withα = 2 (w1, abscissae) and other values ofα (w2,
ordinates). Open squares:α = 1.0, solid diamonds:α = 0.5, open
circles:α = 0.2.

used in MD calculations, these results should be re-
garded more reliable, which is also supported by better
fitting to the experimental data (Table 2). One can con-
clude that using an appropriate force field is still very
important, even when experimental data are used; this
is particularly remarkable in view of the fact that en-
semble fitting or energy minimization subject to NMR
restraints are often carried out using vacuum force
fields.

A characteristic feature of the conformations of
both ENKL and ENKD is aβ-turn at the Gly3–Trp4

residues. Thisβ-turn is forced by ring closure. The
distribution of turn types (obtained using the weights
calculated withα = 0.2 for the EDMC ensembles
andα = 2.0 for the MD ensembles) is summarized
in Table 3.
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Figure 10. Distributions of the A2bu(NγH)· · ·A2bu(CO) and A2bu(NγH)· · ·Gly(CO) distances (i.e. fractions of conformations for which the
respective H· · ·O distance is less than the abscissa value) for the EDMC (a) and MD (b) ensembles. The contributions from the individual
conformations were weighted by the weights obtained withα = 0.2 and 2.0 for the EDMC and MD ensembles, respectively.

Table 3. Fractions ofβ-turns of different types ob-
tained by fitting EDMC and MD ensembles of
ENKL and ENKD to NMR data

Type EDMC MD

ENKL ENKD ENKL ENKD

I 0.070 0.075 0.029 0.087
II 0.000 0.003 0.000 0.000
III 0.133 0.029 0.004 0.000
IV 0.024 0.359 0.153 0.356
I′ 0.000 0.000 0.000 0.000
II ′ 0.773 0.533 0.814 0.557
III ′ 0.000 0.001 0.000 0.000

The majority of defined turns are of type II′, the
other turns are of type IV, with no defined hydrogen

bonds, or of type III [according to the classification
of Scheraga and co-workers (Lewis et al., 1973)]. The
population of type II′ β-turns is greater in the case of
ENKL. In the case of the EDMC ensemble of ENKL,
the second group of turns contains mainly the type III
turns and only a minor fraction of type IV turns. The
preference of the type IIIβ-turns in the ECEPP force
field, compared to the AMBER force field, was also
observed in our earlier conformational studies of va-
sopressin and oxytocin analogs (Shenderovich et al.,
1991; Tarnowska et al., 1993). The type II′ β-turns are
not tight and the Leu5(NH) proton is not very much en-
gaged in hydrogen bonding. In contrast to this, in the
case of ENKL theD-A2bu2(NγH) proton is hydrogen-
bonded toD-A2bu2(CO) and to Gly3(CO), while for
ENKD only the first hydrogen bond exists and is
weaker. This difference is illustrated in Figure 10,
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Table 4. Values of temperature coefficients of the
amide protons for ENKL and ENKD

Proton −1δ/1T × 103 [ppm K−1]

ENKL ENKD

D-A2bu(NαH) 9.20± 0.07 6.10± 0.01

D-A2bu(NγH) 2.40± 0.07 5.12± 0.09

Gly(NH) 4.58± 0.07 3.4± 0.2

Trp(NαH) 5.05± 0.01 7.4± 0.4

Trp(NindoleH) 4.46± 0.09 3.53± 0.02

Leu(NH) 3.6± 0.2 6.7± 0.1

where the distributions of theD-A2bu2(NγH)· · ·D-
A2bu2(CO) andD-A2bu2(NγH)· · ·Gly3(CO) distances
are shown. From the results of the MD simulations it
follows that in the case of ENKL about 40% of the
population has theD-A2bu2(Nγ-H)· · ·D-A2bu2(C=O)
and D-A2bu2(Nγ-H)· · ·Gly3(C=O) distances within
2.5 Å. For ENKD only about 15% of the popula-
tion has theD-A2bu2(Nγ-H)· · ·D-A2bu2(C=O) dis-
tance within this value. Qualitatively similar, though
less pronounced differences can be noticed in the case
of the results of EDMC simulations. This result is in
full agreement with the values of the temperature co-
efficients of the two analogs under study. The value
of the NγH amide proton temperature coefficient of
ENKL is close to 2, which suggests that this proton
is engaged in hydrogen bonds; the temperature co-
efficient is remarkably higher in the case of ENKD
(Table 4).

The presence of more stable intra-annular hydro-
gen bonds in the case of ENKL probably contributes
to its greater rigidity, which is, in turn, suggested
to be the cause of the greater affinity of theL-Leu5

cyclic enkephalin analogs for theµ opioid receptor,
compared to theD-Leu5 analogs (Mierke et al., 1987,
1990; Yamazaki et al., 1991).

Conclusions

In this work we have proposed a relatively fast method
to determine the conformational equilibrium of small
peptides by means of maximum-entropy fitting of the
statistical weights of the conformations generated by
theoretical calculations to NMR data. The method is
not restricted to NMR data only and any combination
of experimental data that carries conformation-related
information can be implemented. Its advantage over

the existing approaches is avoiding of ‘overfitting’ the
experimental data, while keeping the computational
cost at a reasonable level even for large input ensem-
bles of conformations. We have shown that the result-
ing conformational ensembles are largely unaffected
by the choice of the scaling factors of different error
terms. The final conformational ensembles derived for
the two cyclic enkephalin analogs under study turned
out to be consistent with independent data on tempera-
ture coefficients, as well as with earlier conformational
studies of related cyclic enkephalin analogs (Mierke
et al., 1987, 1990; Yamazaki et al., 1991).

From the results of our study it follows that the best
way to use the proposed method could consist of two
stages, each comprising the conformational search and
the fitting step. In the first stage, a global optimiza-
tion method such as EDMC could be used, in order to
generate a sparse, but widespread conformational en-
semble. The conformations with top statistical weights
resulting from this stage could then be used as starting
conformations for the local, more detailed search by
means of the MD or canonical Monte Carlo method
and, finally, the statistical weights of the conforma-
tions of the ensemble obtained in the second stage
could be determined. A similar approach to confor-
mational search was recently proposed by Meirovich
and co-workers (Meirovitch et al., 1995; Meirovitch
and Meirovitch, 1996; Baysal and Meirovich, 1998).

Program availability

FORTRAN 77 source codes of the fitting programs, as
well as test examples and documentation are available
from the Cornell Theory Center software repository at
http://www.tc.cornell.edu/reports/NIH/resource/Comp
BiologyTools/analyze/ or can be obtained from the
authors upon request.
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